My Opera is closing 3rd of March

live in Japan

Gambatte!

Định lý cuối cùng của Fermat

Câu chuyện về định lý cuối cùng của Fermat là câu chuyện độc nhất vô nhị trong lịch sử toán học thế giới, khởi nguồn từ cổ đại với nhà toán học Pythagore. Bài toán cuối cùng (sau này giới toán học gọi là Định lý cuối cùng của Fermat, hay Định lý lớn Fermat) có gốc từ định lý Pythagore: "Trong một tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông". Fermat thay đổi phương trình Pythagore và tạo ra một bài toán khó bất hủ.




Câu chuyện về định lý cuối cùng của Fermat là câu chuyện độc nhất vô nhị trong lịch sử toán học thế giới, khởi nguồn từ cổ đại với nhà toán học Pythagore. Bài toán cuối cùng (sau này giới toán học gọi là Định lý cuối cùng của Fermat, hay Định lý lớn Fermat) có gốc từ định lý Pythagore: "Trong một tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông". Fermat thay đổi phương trình Pythagore và tạo ra một bài toán khó bất hủ.

Phương trình Pythagore cho ta:

x² + y² = z²
Người ta có thể hỏi những nghiệm số nguyên của phương trình này là gì, và có thể thấy rằng:

3² + 4² = 5²


5² + 12² = 13²
Và nếu tiếp tục tìm kiếm thì sẽ tìm thấy rất nhiều nghiệm như vậy. Fermat khi đó xét dạng bậc ba của phương trình này:

x³ + y³ = z³
Ông đặt câu hỏi: có thể tìm được nghiệm (nguyên) cho phương trình bậc ba này hay không? Ông khẳng định là không. Thực ra, ông khẳng định điều đó cho họ phương trình tổng quát:

xn + yn = zn,
trong đó n lớn hơn 2 không thể tìm được nghiệm (nguyên) nào. Đó là Định lý Fermat cuối cùng.


Điều lý thú ở đây là phỏng đoán này được Fermat ghi bên lề một cuốn sách mà không chứng minh, nhưng có kèm theo dòng chữ: "Tôi có một phương pháp rất hay để chứng minh cho trường hợp tổng quát, nhưng không thể viết ra đây vì lề sách quá hẹp."!!

Các nhà toán học đã cố gắng giải bài toán này trong suốt 300 năm. Trong lịch sử đi tìm lời giải cho định lý cuối cùng của Fermat có người phải tự tử và có cả sự lường gạt... Và cuối cùng nhà toán học Andrew Wiles (một người Anh, định cư ở Mỹ, sinh 1953) sau 7 năm làm việc trong cô độc và 1 năm giày vò trong cô đơn đã công bố lời giải độc nhất vô nhị vào mùa hè năm 1993 và sửa lại năm 1995, với lời giải dài 200 trang.


Tháng 5 năm 1993, "crucial breakthrough", Wiles khoe với phu nhân là đã giải được rồi.
Tháng 6 năm 1993, "Elliptic Curves and Modular Forms", Wiles lần đầu tiên công bố là ông đã giải được Định lý lớn Fermat.
Tháng 7-8 năm 1993, Nick Katz (đồng nghiệp) trao đổi email với Wiles về những điểm chưa hiểu rõ, trong đó nhắc rằng trong chứng minh của ông có 1 sai lầm căn bản.
Tháng 9 năm 1993, Wiles nhận ra chỗ sai và cố gắng sửa. Sinh nhật phu nhân ngày 6 tháng 10, bà nói chỉ cần quà sinh nhật là một chứng minh đúng. Wiles cố hết sức nhưng không làm được.
Tháng 11 năm 1993, ông gởi email công bố là có trục trặc trong phần đó của chứng minh.
Sau nhiều tháng thất bại, Wiles sắp chịu thua. Trong tuyệt vọng, ông yêu cầu giúp đỡ. Richard Taylor, một sinh viên cũ của ông, tới Princeton cùng nghiên cứu với ông.
Ba tháng đầu 1994, ông cùng Taylor tìm mọi cách sửa chữa vấn đề nhưng vô hiệu.
Tháng 9 năm 1994, ông quay lại nghiên cứu một vấn đề căn bản mà chứng minh của ông được dựa trên đó
Ngày 19 tháng 9 năm 1994 phát hiện cách sửa chữa chỗ trục trặc đơn giản và đẹp, dựa trên một cố gắng chứng minh đã làm 3 năm trước. Sau khi coi lại cẩn thận, ông mừng rỡ nói với phu nhân là đã làm được.
Tháng 5 năm 1995 đăng lời giải trên Annals of Mathematics (Princeton University).
Tháng 8 năm 1995 hội thảo ở Boston University, giới toán học công nhận chứng minh là đúng.
(st)

Vẻ đẹp của toán họcđã sắp qua 1 năm

Comments

meijitdinhanhvu Thursday, October 21, 2010 4:20:13 AM

Sao bạn lại chép lại từ wikipedia!

Write a comment

New comments have been disabled for this post.